Package: biosensors.usc 1.0
biosensors.usc: Distributional Data Analysis Techniques for Biosensor Data
Unified and user-friendly framework for using new distributional representations of biosensors data in different statistical modeling tasks: regression models, hypothesis testing, cluster analysis, visualization, and descriptive analysis. Distributional representations are a functional extension of compositional time-range metrics and we have used them successfully so far in modeling glucose profiles and accelerometer data. However, these functional representations can be used to represent any biosensor data such as ECG or medical imaging such as fMRI. Matabuena M, Petersen A, Vidal JC, Gude F. "Glucodensities: A new representation of glucose profiles using distributional data analysis" (2021) <doi:10.1177/0962280221998064>.
Authors:
biosensors.usc_1.0.tar.gz
biosensors.usc_1.0.zip(r-4.5)biosensors.usc_1.0.zip(r-4.4)biosensors.usc_1.0.zip(r-4.3)
biosensors.usc_1.0.tgz(r-4.5-x86_64)biosensors.usc_1.0.tgz(r-4.5-arm64)biosensors.usc_1.0.tgz(r-4.4-x86_64)biosensors.usc_1.0.tgz(r-4.4-arm64)biosensors.usc_1.0.tgz(r-4.3-x86_64)biosensors.usc_1.0.tgz(r-4.3-arm64)
biosensors.usc_1.0.tar.gz(r-4.5-noble)biosensors.usc_1.0.tar.gz(r-4.4-noble)
biosensors.usc_1.0.tgz(r-4.4-emscripten)biosensors.usc_1.0.tgz(r-4.3-emscripten)
biosensors.usc.pdf |biosensors.usc.html✨
biosensors.usc/json (API)
# Install 'biosensors.usc' in R: |
install.packages('biosensors.usc', repos = c('https://glucodensities.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/glucodensities/biosensors.usc/issues
Last updated 3 years agofrom:ff3b346d90. Checks:1 OK, 11 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 07 2025 |
R-4.5-win-x86_64 | NOTE | Mar 07 2025 |
R-4.5-mac-x86_64 | NOTE | Mar 07 2025 |
R-4.5-mac-aarch64 | NOTE | Mar 07 2025 |
R-4.5-linux-x86_64 | NOTE | Mar 07 2025 |
R-4.4-win-x86_64 | NOTE | Mar 07 2025 |
R-4.4-mac-x86_64 | NOTE | Mar 07 2025 |
R-4.4-mac-aarch64 | NOTE | Mar 07 2025 |
R-4.4-linux-x86_64 | NOTE | Mar 07 2025 |
R-4.3-win-x86_64 | NOTE | Mar 07 2025 |
R-4.3-mac-x86_64 | NOTE | Mar 07 2025 |
R-4.3-mac-aarch64 | NOTE | Mar 07 2025 |
Exports:clusteringclustering_predictiongenerate_datahypothesis_testingload_datanadayara_predictionnadayara_regressionregmod_predictionregmod_regressionridge_regression
Dependencies:ashbitopsbootcliclustercodetoolscolorspacedeSolvedoParallelenergyevaluatefansifarverfdafda.uscfdsFNNforeachggplot2gluegslgtablehdrcdehighrisobanditeratorskernlabKernSmoothknitrkskSampleslabelinglatticelifecyclelocfitmagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmeosqpparallelDistpcaPPpillarpkgconfigpracmaR6rainbowRColorBrewerRcppRcppArmadilloRcppParallelRCurlrlangscalesSuppDiststibbletruncnormutf8vctrsviridisLitewithrxfunyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
biosensors.usc Package | biosensors.usc |
clustering | clustering |
clustering_prediction | clustering_prediction |
generate_data | generate_data |
hypothesis_testing | hypothesis_testing |
load_data | load_data |
nadayara_prediction | nadayara_prediction |
nadayara_regression | nadayara_regression |
regmod_prediction | regmod_prediction |
regmod_regression | regmod_regression |
ridge_regression | ridge_regression |