Package: biosensors.usc 1.0

biosensors.usc: Distributional Data Analysis Techniques for Biosensor Data

Unified and user-friendly framework for using new distributional representations of biosensors data in different statistical modeling tasks: regression models, hypothesis testing, cluster analysis, visualization, and descriptive analysis. Distributional representations are a functional extension of compositional time-range metrics and we have used them successfully so far in modeling glucose profiles and accelerometer data. However, these functional representations can be used to represent any biosensor data such as ECG or medical imaging such as fMRI. Matabuena M, Petersen A, Vidal JC, Gude F. "Glucodensities: A new representation of glucose profiles using distributional data analysis" (2021) <doi:10.1177/0962280221998064>.

Authors:Juan C. Vidal [aut, cre], Marcos Matabuena [aut], Marta Karas [ctb]

biosensors.usc_1.0.tar.gz
biosensors.usc_1.0.zip(r-4.5)biosensors.usc_1.0.zip(r-4.4)biosensors.usc_1.0.zip(r-4.3)
biosensors.usc_1.0.tgz(r-4.4-x86_64)biosensors.usc_1.0.tgz(r-4.4-arm64)biosensors.usc_1.0.tgz(r-4.3-x86_64)biosensors.usc_1.0.tgz(r-4.3-arm64)
biosensors.usc_1.0.tar.gz(r-4.5-noble)biosensors.usc_1.0.tar.gz(r-4.4-noble)
biosensors.usc_1.0.tgz(r-4.4-emscripten)biosensors.usc_1.0.tgz(r-4.3-emscripten)
biosensors.usc.pdf |biosensors.usc.html
biosensors.usc/json (API)

# Install 'biosensors.usc' in R:
install.packages('biosensors.usc', repos = c('https://glucodensities.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/glucodensities/biosensors.usc/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

4.18 score 3 scripts 208 downloads 10 exports 63 dependencies

Last updated 3 years agofrom:ff3b346d90. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 08 2024
R-4.5-win-x86_64NOTEOct 08 2024
R-4.5-linux-x86_64NOTEOct 08 2024
R-4.4-win-x86_64NOTEOct 08 2024
R-4.4-mac-x86_64NOTEOct 08 2024
R-4.4-mac-aarch64NOTEOct 08 2024
R-4.3-win-x86_64NOTEOct 08 2024
R-4.3-mac-x86_64NOTEOct 08 2024
R-4.3-mac-aarch64NOTEOct 08 2024

Exports:clusteringclustering_predictiongenerate_datahypothesis_testingload_datanadayara_predictionnadayara_regressionregmod_predictionregmod_regressionridge_regression

Dependencies:ashbitopsbootcliclustercodetoolscolorspacedeSolvedoParallelenergyfansifarverfdafda.uscfdsFNNforeachggplot2gluegslgtablehdrcdeisobanditeratorskernlabKernSmoothkskSampleslabelinglatticelifecyclelocfitmagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmeosqpparallelDistpcaPPpillarpkgconfigpracmaR6rainbowRColorBrewerRcppRcppArmadilloRcppParallelRCurlrlangscalesSuppDiststibbletruncnormutf8vctrsviridisLitewithr

Introduction to the biosensors.usc package

Rendered fromintro_to_package.Rmdusingknitr::rmarkdownon Oct 08 2024.

Last update: 2022-04-29
Started: 2022-02-11

Readme and manuals

Help Manual

Help pageTopics
biosensors.usc Packagebiosensors.usc
clusteringclustering
clustering_predictionclustering_prediction
generate_datagenerate_data
hypothesis_testinghypothesis_testing
load_dataload_data
nadayara_predictionnadayara_prediction
nadayara_regressionnadayara_regression
regmod_predictionregmod_prediction
regmod_regressionregmod_regression
ridge_regressionridge_regression